Interference of Light Waves

Review the text book: chapter 24.6 Diffraction (pg.836) and chapter 24.8 The Diffraction Grating (pg.839)

- Phys 1402: Serway/Vuille: Sections. 24.6, 24.7, 24.8.
- Phys 2426: Serway/Jewett: Sections. 38.1, 38.2, 38.4

Diffraction grating and two-slit apparatus characterized by the spacing between lines/slits, d.
When monochromatic light goes through either of the above devices, beams of light emerge from the other side only at specific angles (Figure 1): $\boldsymbol{m} \boldsymbol{\lambda}=\boldsymbol{d} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$, where m is a positive or negative integer, or zero.
The middle beam corresponds to $m=0$. Beams on each side are symmetrically correspond to m of the same magnitude but opposite sign.
When the beams hit a screen, they appear as dots. We usually talk about the dots.
The maximum possible angle is, of course, 90°. Setting a value of m too high causes the angle to become impossible. To find the maximum m, set $\theta=90^{\circ}$, then round down.

Figure 1: Graphic demonstration of the two-slit interference pattern. (Image Source: IOP)

1. The diffraction grating has 457 rulings per mm . What is the separation of slits for this diffraction grating? $\left(2.189 \times 10^{-6} \mathrm{~m}\right)$
2. When light with a wavelength of 546 nm passes through a particular diffraction grating, a second order principal maximum is observed at an angle of 16°. What is the separation of this diffraction grating? (3.96 $\mu \mathrm{m}$)
3. Light of 530 nm passing through a diffraction grating with a separation, $\mathrm{d}=8.5 \times 10^{-6} \mathrm{~m}$ creates an interference pattern on a screen 2.3 m away. What is the maximum number of bright fringes that it is possible to see? (Hint: Find the maximum m value. There are that many fringes on each side, plus one in the middle.) (33)
4. Light passing through a diffraction grating with a separation, $\mathrm{d}=8.5 \times 10^{-5} \mathrm{~m}$ creates an interference pattern on a screen 2.3 m away. If the 10th bright fringe above the central fringe is a linear distance of 12 cm from it, what is the wavelength of light used in the experiment?
(440 nm)
5. Light with a wavelength, $\lambda=511 \mathrm{~nm}$ forms a diffraction pattern after passing through a single-slit of width, $a=2.20 \mu \mathrm{~m}$ on a screen 2.31 m away. Find the angle associated with the second dark fringe above the central bright fringe and its linear distance on the screen from the central fringe. Hint: the condition of destructive interference for a single slit is $a \sin \theta=m \lambda$
(27.7 ${ }^{\circ}$)
